V-SUPER AND E-SUPER VERTEX-MAGIC TOTAL LABELING OF GRAPHS
 G. Kumar
 Department of Mathematics, Alagappa University Evening College, Ramnad, Tamil Nadu, India

Abstract

Let G be a graph of order p and size q. A vertex-magic total labeling is an assignment of the integers $1,2, \ldots, p+q$ to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic constant of G. Such a labeling is V-super vertex-magic total if $f(V / G)=\{1,2, \ldots, p\}$, and is an E-super vertex-magic total if $f(E(G)=\{1,2, \ldots, q\}$. A graph that admits a V-super vertex-magic total labeling is called V-super vertex-magic total. Similarly, a graph that admits an E-super vertex-magic total labeling is called E-super vertex-magic total. In this paper, we provide some properties of E-super vertex-magic total labeling of graphs and we prove V-super and E-super vertex-magic total labeling of the product of cycles $C_{m} \times C_{n}$, where $m, n \geq 3$ and m, n odd.

KEYWORDS: Vertex Magic Total Labeling, V-Super Vertex Magic Total Labeling, E-Super Vertex Magic Total Labeling

Article History

Received: 15 Jun 2018 | Revised: 23 Jun 2018 |Accepted: 02 Jul 2018

1. INTRODUCTION

In this paper, we consider only finite simple undirected graph. The set of vertices and edges of a graph G will be denoted by $V(G)$ and $E(G)$ respectively and we let $p=|V(G)|$ and $q=|E(G)|$. The set of neighbors of a vertex v is denoted by $N(v)$. For general graph theoretic notations, we follow [18].

A labeling of a graph G is a mapping that carries a set of graph elements, usually the vertices and/or edges, into a set of numbers, usually, integers, called labels. Many kinds of labeling have been studied and an excellent survey of graph labeling can be found in [4].

MacDougal et al. [13] introduced the notion of vertex-magic total labeling. For a graph G with p vertices and q edges, a vertex-magic total labeling (VMTL) is a bijection $f: V(G) U E(G) \rightarrow\{1,2,3, \ldots, p+q\}$ such that for every vertex $u \in V(G)$, its weight $w t_{f}(u)=f(u)+\sum_{v \in N(u)} f(u v)=k$ for some constant k. This constant is called the magic constant of the VMTL. They studied the basic properties of vertex-magic graphs and showed some families of graphs having a vertex -magic total labeling

MacDougall et al [14] and Swaminathan and Jeyanthi [21] introduced different labeling with same name super vertex-magic total labeling. To avoid confusion, Marimuthu and Balakrishnan [15] called a vertex-magic total labeling is
\boldsymbol{E}-super vertex magic total if $f(E(G))=\{1,2,3, \ldots, q\}$, i.e. the smallest labels are assigned to the edges. A graph G is called \boldsymbol{E}-super vertex-magic total if it admits an E-super vertex-magic total labeling.

MacDougall, Miller and Sugeng [14] introduced the notion of super vertex-magic total labeling, A vertex-magic total labeling is super if $f(V(G))=\{1,2,3, \ldots \ldots, p\}$, we call it as \boldsymbol{V}-super vertex-magic total labeling. A graph G is called V-super vertex-magic total if it admits a V-super vertex-magic total labeling, i.e. the smallest labels are assigned to the vertices. In [14], they proved that an r-regular graph of order p has a V-super vertex-magic total labeling then p and r have opposite parity and if $(i) p \equiv 0(\bmod 8)$ then $q \equiv 0(\bmod 4)$, $(i i) p \equiv 4(\bmod 8)$ then $q \equiv 2(\bmod 4)$. The cycle C_{n} has a V-super vertex-magic total labeling if and only if n is odd. They also conjectured that if $n \equiv 0(\bmod 4) ; n>4$, then K_{n} has a V-super vertex-magic total labeling. But this conjecture was proved by J. Gomez in [5] also a tree, wheel, fan, ladder, or friendship graph has no V-super vertex-magic total labeling. If G has a vertex of degree one, then G is not V-super vertex-magic total. For more results regarding V-super VMTLs, see [4], [5] and [18].

Swaminathan and Jeyanthi [21] showed that a path P_{n} is E-super vertex-magic total if and only if n is odd and $n \geq 3$. A cycle C_{n} is E-super vertex-magic if and only if n is odd. $m C_{n}$ is E-super vertex-magic total if and only if m and n are odd. Marimuthu and Balakrishnan [15] proved that for a connected graph G and G has an E-super vertex-magic total labeling with magic constant k then $k \geq(5 p-3) / 2$. Also, proved for a (p, q) graph, with even p and $q=p-1$ or p, then the graph is not E-super vertex-magic total. Generalized Petersen graph $P(n, m)$ is not E-super vertex-magic total if n is odd. They also discussed about the E-super vertex magicness of m connected graph $H_{m, n}$. A graph with the odd order can be decomposed into two Hamiltonian cycles, then G is E-super vertex-magic total. A graph G can be decomposed into two spanning subgraphs G_{1} and G_{2} where G_{l} is E-super vertex-magic total and G_{2} is magic and regular then G is E-super vertex-magic total. Also, they proved as the two spanning subgraphs are E-super vertex-magic total and one is regular then the graph G is E-super vertex-magic total. Readers are referred to $[6,7,8,9,10,12,20$, and 22] for general background and basic constructions regarding E-super VMTLs.

The following results will be very useful to prove some theorems.

Lemma1.2[14]

If a non- trivial graph G is an V-super vertex magic total, then the magic constant h is given by $h=2 q+\frac{p+1}{2}+\frac{q(q+1)}{p}$.

Lemma1.3[21]

If a non- trivial graph G is an E-super vertex magic total, then the magic constant k is given by $k=q+\frac{p+1}{2}+\frac{q(q+1)}{p}$.

Theorem 1.4[17]
The dual of an E-super (respectively V-super) vertex-magic total labeling for a graph G is a V-super (respectively E-super) vertex-magic total labeling if and only if G is r-regular, $r \geq 1$.

Theorem 1.5[14]

No complete bipartite graph is V-super vertex magic total.

Theorem 1.6[17]

Let G be any graph without isolated vertex. If G is E-super vertex-magic total, then the magic constant $k>p+q$.

Theorem 1.7[20]

No E-super vertex-magic total graph has two or more isolated vertices or an isolated edge.

Theorem 1.8[1]

Complete bipartite graph $K_{m, n}$ is Hamiltonian if and only if $m=n$.

Theorem 1.9[16]

Let G be an E-super vertex-magic total graph with p vertices, q edges, and magic constant k. Then the degree d of any vertex of G satisfies

$$
q+\frac{1}{2}-\sqrt{\left(q+\frac{1}{2}\right)^{2}-2(k-p-q)} \leq d \leq \frac{-1}{2}+\sqrt{2(k-p)-\frac{7}{4}}
$$

This article contains four sections. In section 1, a brief history of the subject is given. Section 2 establishes some properties of E-super vertex-magic total labeling of graphs. In section 3, we provide V-super and E-super vertex-magic total labeling of the product of cycles $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$, where $m, n \geq 3$ and m, n odd.

2. SOME PROPERTIES OF E-SUPER VERTEX MAGIC TOTAL LABELING OF GRAPHS

In this section, we give some properties of E-super vertex-magic total labeling of graphs.

Theorem 2.1

Let G be an E-super vertex-magic total graph with one isolated vertex. Then the order p and the size q must satisfy $(p-1)^{2}+p^{2}=(2 q+1)^{2}$.

Proof

Since G is an E-super vertex-magic total graph, G cannot have more than one isolated vertex. Suppose that G has an isolated vertex, say u. Since the label for any vertex is at most $p+q$, then the weight of u satisfies $w t_{f}(u)=k \leq(p+q)$. If $w t_{f}(u)<(p+q)$, then we can find another vertex v, different from u, with label $p+q$, so that $k=w t_{f}(v)>(p+q)$. This is a contradiction to the assumption that $k<(p+q)$. Hence $w t_{f}(u)=k=(p+q)$.

But from the Lemma 1.3, $k=q+\frac{p+1}{2}+\frac{q(q+1)}{p}$

$$
\begin{aligned}
& p+q=q+\frac{p+1}{2}+\frac{q(q+1)}{p} \\
& p=\frac{p+1}{2}+\frac{q(q+1)}{p} \\
& \frac{p}{2}=\frac{1}{2}+\frac{q^{2}}{p}+\frac{q}{p} . \\
& p=1+\frac{2 q^{2}}{p}+\frac{2 q}{p} \\
& p(p-1)=2 q(q+1)
\end{aligned}
$$

Multiplying by 2 on both sides and simplifying we get, $(p-1)^{2}+p^{2}=(2 q+1)^{2}$.
Next, we consider the complete bipartite graphs. It was shown in [13] that the only complete bipartite graphs that could admit a VMTL are $K_{m, m}$ and $K_{m, m+l}$ and that a VMTL does exist in both cases for every $m>1$. So these are the only candidates remain to discuss the E - super VMTL. However, we show that neither of them is E-super vertex-magic total in the following theorem.

Theorem 2.2.

No complete bipartite graph except $K_{l, 2}$ is an E-super vertex-magic total graph.

Proof

Obviously, $K_{l, l}$ is isomorphic to P_{2}, which is not E-super vertex magic total by Theorem 1.7. Suppose, by way of contradiction, that $K_{m, m}$ has an E-super vertex-magic total labeling. Since $K_{m, m}$ is regular,we get $K_{m, m}$ is V-super vertex -magic total by the method of duality (see Theorem 1.4). Note that, in view of Theorem 1.5, no complete bipartite graph is V-super vertex-magic total, a contradiction.

Now we suppose that $K_{m, m+1}$ is E-super vertex-magic total with $p=2 m+1, q=m(m+1)$. Then according to the Lemma 1.3, the magic constant k is given by
$k=q+\frac{p+1}{2}+\frac{q(q+1)}{p}=m(m+1)+\frac{2 m+2}{2}+\frac{m(m+1)[m(m+1)+1]}{2 m+1}$
It follows that
$k=\frac{m^{4}+4 m^{3}+7 m^{2}+5 m+1}{2 m+1}$.
Now we consider the following cases according to the nature of m.
Case (i) If m is odd, let $m=2 r-1$, then by Lemma 1.3, the magic constant k is given by
$k=\frac{(2 r-1)^{4}+4(2 r-1)^{3}+7(2 r-1)^{2}+5(2 r-1)+1}{2(2 r-1)+1}=\frac{16 r^{4}+4 r^{2}-2 r}{4 r-1}=4 r^{3}+r^{2}+r+\frac{r(r-1)}{4 r-1}$ which is an integer only when $r=1$.
If $r=1$, then we get $K_{l, 2}$. Clearly $K_{l, 2}$ is an E-super vertex-magic total graph with magic constant $k=6$. It is shown in Figure 1.

Case (ii) If m is even, let $m=2 r$, then by Lemma 1.3, the magic constant k is given by
$k=\frac{(2 r)^{4}+4(2 r)^{3}+7(2 r)^{2}+5(2 r)+1}{2(2 r)+1}=\frac{16 r^{4}+32 r^{3}+28 r^{2}+10 r+1}{4 r+1}=4 r^{3}+7 r^{2}+6 r+1-\frac{3 r^{2}}{4 r+1}$ which is not an integer.
In all the cases, we get k is not an integer, and this concludes the proof.

Corollary 2.3.

No complete bipartite Hamiltonian graph is E-super vertex-magic total.

Proof.

Let $G \cong K_{m, n}$ be a complete bipartite Hamiltonian graph. If $m=1$, then by Theorem $1.6, n$ should be equal to 1 . But $K_{l, l}$ is isomorphic to P_{2}, which is not E-super vertex-magic total by Theorem 1.7. If $m>1$, then by above theorem, G is not an E-super vertex-magic total graph.

Figure 1: E-super Vertex Magic Total Labeling of $\boldsymbol{K}_{1,2}$ with $k=6$

Theorem 2.4.

If G is a connected planar graph with $p \geq 3$ and G has an E-super vertex magic total labeling with magic constant k, then $k \leq \frac{25 p^{2}-77 p+60}{2 p}$.

Proof.

If G is a connected planar graph with $p \geq 3$, then $q \leq 3 p-6$
By Lemma 1.3, the magic constant $k=q+\frac{(p+1)}{2}+\frac{q(q+1)}{p}$

$$
\begin{aligned}
& \leq 3 p-6+\frac{p+1}{2}+\frac{(3 p-6)(3 p-5)}{p} \\
& =\frac{7 p-11}{2}+\frac{9 p^{2}-33 p+30}{p} \\
& =\frac{25 p}{2}-\frac{77}{2}+\frac{30}{p} \\
& k \leq \frac{25 p^{2}-77 p+60}{2 p} .
\end{aligned}
$$

Theorem 2.5.

If G is a connected maximal planar graph with $p \geq 3$ and G has an E-super vertex magic total labeling with magic constant k, then $k=\frac{25 p^{2}-77 p+60}{2 p}$.

Proof.
If G is a connected maximal planar graph with $p \geq 3$, then $q=3 p-6$
By Lemma 1.3, the magic constant $k=q+\frac{(p+1)}{2}+\frac{q(q+1)}{p}$

$$
\begin{aligned}
& =3 p-6+\frac{p+1}{2}+\frac{(3 p-6)(3 p-5)}{p} \\
& =\frac{7 p-11}{2}+\frac{9 p^{2}-33 p+30}{p} \\
& =\frac{25 p}{2}-\frac{77}{2}+\frac{30}{p} \\
& k=\frac{25 p^{2}-77 p+60}{2 p} \cdot
\end{aligned}
$$

3. V-SUPER AND E-SUPER VERTEX MAGIC TOTAL LABELING OF PRODUCT OF CYCLES

For $C_{m} \times C_{n}, p=m n$ and $q=2 m n$. In this section we provide V-super and E-super vertex magic total labeling of product of cycles $C_{m} \mathrm{x} C_{n}$, where $m, n \geq 3$ and m, n odd.

Theorem 3.1

For each $m, n \geq 3$ and m, n odd, there exists a V-super vertex magic labeling of $C_{m} \times C_{n}$ with the magic constant k $=\frac{17}{2} m n+\frac{5}{2}$.

Proof
Let $G \cong C_{m} \times C_{n}$ have vertices $v_{i, j}$, vertical edges $v_{i, j} v_{i+1, j}$ and horizontal edges $v_{i, j} v_{i, j+1}$ where $i=0,1, \ldots, m-1$, $j=0,1, \ldots, n-1$ and m and n are odd integers greater than 1 . Consider the following labeling, where the subscripts i and j are taken modulo m and n, respectively.
$f\left(v_{i, j}\right)=j m+1+i$
$f\left(v_{i, j} v_{i+1, j}\right)=\left\{\begin{array}{l}(2 n-j-1) m+1+\frac{i}{2} \text { if } i \text { is even } \\ (2 n-j-1) m+1+\frac{i+m}{2} \text { if } i \text { is odd }\end{array}\right.$
$f\left(v_{i, j} v_{i, j+1}\right)=\left\{\begin{array}{l}\left(2 n+\frac{j}{2}+1\right) m-i \text { if } j \text { is even } \\ \left(2 n+\frac{j+n}{2}+1\right) m-i \text { if } j \text { is odd }\end{array}\right.$

The magic constant h is obtained from the following cases.
Case(i) If both i and j are even then the magic constant is given by

$$
\begin{aligned}
& h=f\left(v_{i, j}\right)+f\left(v_{i-l, j} v_{i, j}\right)+f\left(v_{i, j} v_{i+1, j}\right)+f\left(v_{i, j-1} v_{i, j}\right)+f\left(v_{i, j} v_{i, j+l}\right) \\
& =[j m+1+i]+\left[(2 n-j-1) m+1+\frac{m+i-1}{2}\right]+\left[(2 n-j-1) m+1+\frac{i}{2}\right]+\left[\left(2 n+\frac{n+j-1}{2}+1\right) m-i\right]+\left[\left(2 n+\frac{j}{2}+1\right) m-i\right]
\end{aligned}
$$

$h=\frac{17}{2} m n+\frac{5}{2}$
Case(ii) If i is even and j is odd then the magic constant h is given by

$$
\begin{aligned}
& h=f\left(v_{i, j}\right)+f\left(v_{i-l, j} v_{i, j}\right)+f\left(v_{i, j} v_{i+1, j}\right)+f\left(v_{i, j-l} v_{i, j}\right)+f\left(v_{i, j} v_{i, j+1}\right) \\
& =[j m+1+i]+\left[(2 n-j-1) m+1+\frac{m+i-1}{2}\right]+\left[(2 n-j-1) m+1+\frac{i}{2}\right]+\left[\left(2 n+\frac{j-1}{2}+1\right) m-i\right]+\left[\left(2 n+\frac{n+j}{2}+1\right) m-i\right] \\
& h=\frac{17}{2} m n+\frac{5}{2} .
\end{aligned}
$$

Similarly, we can prove for i is odd, j is even and for both i and j are odd.
In all the cases, the magic constants are same and $f(V(G))=\{1,2,3, \ldots, p\}$ and $f(E(G))=\{p+1, p+2, \ldots, p+q\}$.Hence G is V-super vertex magic total

Corollary 3.2

For each $m, n \geq 3$ and m, n odd, there exists an E-super vertex magic total labeling of $C_{m} \times C_{n}$ with the magic
constant $k=\frac{15}{2} m n+\frac{5}{2}$.
Proof
By the above Theorem, $G \cong C_{m} \times C_{n}$ is V-super vertex-magic total for $m, n \geq 3$ and m, n odd. Since G is regular, by duality method, G is E-super vertex magic total for $m, n \geq 3$ and m, n odd.

Corollary 3.3

For each $m, n \geq 3$ and m even, there does not existan E-super vertex-magic total labeling of $C_{m} \times C_{n}$.

Corollary 3.4

For each $m, n \geq 3$ and m odd, n even, there does not exist an E-super vertex-magic total labeling of $C_{m} \times C_{n}$.

Corollary 3.5

For each $m, n \geq 3$ and m even, there does not exist a V-super vertex-magic total labeling of $C_{m} \times C_{n}$.

Corollary 3.6

For each $m, n \geq 3$ and m odd, n even, there does not exists a V-super vertex magic total labeling of $C_{m} \times C_{n}$.
An example is given in the following Figure 3.1

Figure 3.1: V-Super vertex Magic Total Labeling of $C_{3} \times C_{5}$ with Magic Constant $h=130$

REFERENCES

1. J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, North Holland, New York, Amsterdam, Oxford, 1976.
2. Dalibor Fronček, Petr kovář and Teresa kovářová, Vertex magic total labeling of product of cycles, Australas. J. Combin. 33(2005) 169-181.
3. H. Enomoto, A.S. Llado, T. Nakamigawa, G. Ringel, Super edge-magic graphs, SUT J. Math. 2(1998) 105-109.
4. J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 16 (2013) \#DS6.
5. J. G'omez, Two new methods to obtain super vertex-magic total labeling of graphs, Discrete Math., 308 (2008), 3361-3372.
6. I. Gray, New construction methods for vertex-magic total labelings of graphs, Ph.D.Thesis, University of Newcastle, Newcastle, Australia, 2006.
7. I.D. Gray, J.A. MacDougall, Vertex-magic labeling of non- regular graphs, Australas. J. Combin. 46 (2010) 173-183.
8. I.D. Gray and J.A. MacDougall, Vertex-magic labeling of regular graphs: Disjoint unions and assemblages, Discrete Appl.Math. 160 (2012) 1114-1125.
9. I.D. Gray and J.A. MacDougall, Vertex-magic total labelings: mutations, Australas. J. Combin. 45 (2009) 189206.
10. I.D. Gray and J.A. MacDougall, Vertex-magic total labelings of regular graphs II, Discrete Math. 309 (2009) 5986-5999.
11. Goudar, Venkanagouda M., Rajanna Ne, And Ck Subbaraya. "Total Pathos Total Vertex Semientire Block Graph."
12. F. Harary, The maximum connectivity of a graph, Proc. Natl. Acad. Sci. USA 4 (1962) 1142-1146.
13. Jeremy Holden, Dan McQuillan, James M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math., 309(2009) 4130-4136.
14. J.A. MacDougall, M. Miller, Slamin, W.D. Wallis, Vertex-magic total labelings of graphs, Util. Math. 61 (2002) 3-21.
15. J.A. MacDougall, M. Miller, K.A. Sugeng, Super vertex-magic total labelings of graphs, in: Proc. 15th Australian Workshop on Combinatorial Algorithms, 2004, pp. 222-229.
16. G. Marimuthu and M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Appl.Math. 160 (2012) 1766-1774.
17. G. Marimuthu and G. Kumar, On the degrees of E-super vertex-magic graphs, Electronic Notes in Discrete Mathematics 48 (2015) 217-222
18. G. Marimuthu and G. Kumar, Solution to some open problems on E-super vertex magic labeling of disconnected graphs, Applied Mathematics and Computation 268 (2015) 657-663
19. A.M. Marr, W.D. Wallis, Magic graphs, Second edition, Birkhäuser/Springer, New York, 2013.
20. J. Sedlàček, Problem 27, in: Theory of Graphs and its Applications, Proc. Symposium, 1963, pp.163-167.
21. V. Swaminathan, P. Jeyanthi, On super vertex-magic labeling, J. Discrete Math. Sci. Cryptogr. 8 (2005) 217-224.
22. V. Swaminathan and P. Jeyanthi, Super vertex-magic labeling, Indian J. Pure Appl. Math 34(6) (2003) 935-939.
23. Tao-Ming Wang and Guang-Hui Zhang, Note on E-super vertex magic graphs, Discrete Appl. Math. 178 (2014) 160-162.
